Adaptive density deconvolution with dependent inputs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive density deconvolution with dependent inputs

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

Finite sample penalization in adaptive density deconvolution

We consider the problem of estimating the density g of identically distributed variables Xi, from a sample Z1, . . . , Zn where Zi = Xi + σεi, i = 1, . . . , n and σεi is a noise independent of Xi with known density σ fε(./σ). We generalize adaptive estimators, constructed by a model selection procedure, described in Comte et al. (2005). We study numerically their properties in various contexts...

متن کامل

Penalized contrast estimator for adaptive density deconvolution

The authors consider the problem of estimating the density g of independent and identically distributed variables Xi, from a sample Z1, . . . , Zn where Zi = Xi + σεi, i = 1, . . . , n, ε is a noise independent of X, with σε having known distribution. They present a model selection procedure allowing to construct an adaptive estimator of g and to find non-asymptotic bounds for its L2(R)-risk. T...

متن کامل

ar X iv : m at h / 06 06 16 6 v 1 [ m at h . ST ] 7 J un 2 00 6 ADAPTIVE DENSITY DECONVOLUTION WITH DEPENDENT INPUTS

In the convolution model Zi = Xi + εi, we give a model selection procedure to estimate the density of the unobserved variables (Xi) 1≤i≤n , when the sequence (Xi) i≥1 is strictly stationary but not necessarily independent. This procedure depends on wether the density of εi is super smooth or ordinary smooth. The rates of convergence of the penalized contrast estimators are the same as in the in...

متن کامل

Non-blind Image Deconvolution with Adaptive Regularization

Ringing and noise amplification are the most dominant artifacts in image deconvolution. These artifacts can be reduced by introducing image prior into the deconvolution process. A regularization weighting factor can control strength of the regularization. Ringing and noise can be reduced significantly with the strong weighting factor, but details can be lost. We propose a nonblind image deconvo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods of Statistics

سال: 2008

ISSN: 1066-5307,1934-8045

DOI: 10.3103/s1066530708020014