Adaptive density deconvolution with dependent inputs
نویسندگان
چکیده
منابع مشابه
Adaptive density deconvolution with dependent inputs
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملFinite sample penalization in adaptive density deconvolution
We consider the problem of estimating the density g of identically distributed variables Xi, from a sample Z1, . . . , Zn where Zi = Xi + σεi, i = 1, . . . , n and σεi is a noise independent of Xi with known density σ fε(./σ). We generalize adaptive estimators, constructed by a model selection procedure, described in Comte et al. (2005). We study numerically their properties in various contexts...
متن کاملPenalized contrast estimator for adaptive density deconvolution
The authors consider the problem of estimating the density g of independent and identically distributed variables Xi, from a sample Z1, . . . , Zn where Zi = Xi + σεi, i = 1, . . . , n, ε is a noise independent of X, with σε having known distribution. They present a model selection procedure allowing to construct an adaptive estimator of g and to find non-asymptotic bounds for its L2(R)-risk. T...
متن کاملar X iv : m at h / 06 06 16 6 v 1 [ m at h . ST ] 7 J un 2 00 6 ADAPTIVE DENSITY DECONVOLUTION WITH DEPENDENT INPUTS
In the convolution model Zi = Xi + εi, we give a model selection procedure to estimate the density of the unobserved variables (Xi) 1≤i≤n , when the sequence (Xi) i≥1 is strictly stationary but not necessarily independent. This procedure depends on wether the density of εi is super smooth or ordinary smooth. The rates of convergence of the penalized contrast estimators are the same as in the in...
متن کاملNon-blind Image Deconvolution with Adaptive Regularization
Ringing and noise amplification are the most dominant artifacts in image deconvolution. These artifacts can be reduced by introducing image prior into the deconvolution process. A regularization weighting factor can control strength of the regularization. Ringing and noise can be reduced significantly with the strong weighting factor, but details can be lost. We propose a nonblind image deconvo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods of Statistics
سال: 2008
ISSN: 1066-5307,1934-8045
DOI: 10.3103/s1066530708020014